volcanogenic sediments - определение. Что такое volcanogenic sediments
Diclib.com
Словарь ChatGPT
Введите слово или словосочетание на любом языке 👆
Язык:

Перевод и анализ слов искусственным интеллектом ChatGPT

На этой странице Вы можете получить подробный анализ слова или словосочетания, произведенный с помощью лучшей на сегодняшний день технологии искусственного интеллекта:

  • как употребляется слово
  • частота употребления
  • используется оно чаще в устной или письменной речи
  • варианты перевода слова
  • примеры употребления (несколько фраз с переводом)
  • этимология

Что (кто) такое volcanogenic sediments - определение

SEDIMENT FROM MARINE WATERS
Marine sediments; Marine Sediment; Ocean sediment; Ocean sediments; Seafloor sediment; Seafloor sediments; Seabed sediment; Deep sea sediment; Coastal sediments; Coastal sediment
  • url = https://archimer.ifremer.fr/doc/2008/publication-3900.pdf}}</ref>}} In this diagram the youngest parts of the ocean crust are coloured red. These young parts are found either side of the [[mid-ocean ridge]]. New crust emerges and spreads out from this ridge, which traverses central parts of the ocean.
  • Benthic diatom}}
  •  [[Bioturbation]] and bioirrigation in the sediment at the bottom of a coastal ecosystems
  •  [[Black smoker]] hydrothermal vent. The "smoke" consists of dissolved particles that precipitate into solids when exposed to colder water
  • 50px
  • 50px
  • 50px
  • 50px
  • 50px
  • 100px
  •  Calcareous sediment can only accumulate in depths shallower than the calcium carbonate compensation depth (CCD). Below the CCD, calcareous sediments dissolve and will not accumulate. The lysocline represents the depths where the rate of dissolution increases dramatically.
  • 90px
  • 90px
  • colonization by plants]], which – through their effects on erosion and sedimentation – brought about significant climatic change.
  • <small>The red–orange–yellow fractions of organic matter have a different lability</small>}}
  •  Hydrothermal vents occur mostly along the [[mid-ocean ridge]]s
  • see below ↓]]</small>}}
  • 90px
  • Geologic time represented by a geological clock, showing the relative lengths<br />of the eons of Earth's history and noting major events}}
  • 100px
  • 90px
  • Thickness of marine sediments}} The sediments sit on top of the ocean crust, and are thick (green and yellow) along the continental shelves and down the continental slopes. They are at their thinnest (dark blue) near and along the mid-ocean ridge.
  • 10.1594/PANGAEA.115344}}</ref>
  • The drainage basins of the principal oceans and seas of the world are marked by [[continental divide]]s. The grey areas are [[endorheic basin]]s that do not drain to the ocean.
  • 50px]] Modified text was copied from this source, which is available under a [https://creativecommons.org/licenses/by/4.0/ Creative Commons Attribution 4.0 International License].</ref>}} (1) Organic matter settling from the water column is deposited at seafloor (donor control; fixed flux upper boundary condition).<br />(2) Sediments in the photic zone are inhabited by benthic microalgae that produce new organic matter in situ and grazing animals can impact the growth of these primary producers.<br />(3) Bioturbating animals transfer labile carbon from the sediment surface layer to deeper layers in the sediments. (Vertical axis is depth; horizontal axis is concentration)<br />(4) Suspension-feeding organisms enhance the transfer of suspended particulate matter from the water column to the sediments (biodeposition).<br />(5) Sponge consume dissolved organic carbon and produce cellular debris that can be consumed by benthic organisms (i.e., the [[sponge loop]]).<ref name=Middelburg2018 />
  •  The face of blue glacial ice melting into the sea
  •  Animation of Pangaea [[rifting]]
  • Eruption of the Mayon Volcano, Philippines, in 1984. Much of the material spewed from a volcanic eruption may eventually make its way into the oceans
  • 100px
  • rounding]] (horizontal)}}
  • [[Scanning electron micrograph]] showing grains of [[silica sand]]
  • doi-access = free}}</ref>
  •  Well-sorted sediments (left) have particles that are all of a similar size. Poorly sorted sediments (right) consist of particles of a wide range of sizes
  • 100px
  •  A plume of wind-borne particles from Sudan (left) blow over the Red Sea
  • Tektite-like glass found in western Russia
  • The [[Wentworth scale]] classifies sediment by [[grain size]]}}
  •  River discharge in the Yukon Delta, Alaska. The pale color demonstrates the large amounts of sediment released into the ocean via the rivers.
  •  doi-access = free }}</ref>

Cyclic sediments         
  • High Atlas middle liassic carbonate platform of Morocco and succession of regressive, autocyclic, "shallowing upward" metric sequences.
  • Model of a virtual "shallowing upward" metric sequence observed on carbonate platforms all along the south tethyan margin (about 10.000km) during the Liassic. (Micro)fossils are identical from the Maghreb till Oman and furtheron.
  • "shallowing upward" sequences from two sections distant of 230 km; note the hurricane (tempestites and tsunami ?)levels with abundant displaced foraminifera on supratidal flat. Middle Liassic, Morocco.
  • 268x268px
SEQUENCES OF SEDIMENTARY ROCKS THAT ARE CHARACTERISED BY REPETITIVE PATTERNS OF DIFFERENT ROCK TYPES (STRATA) OR FACIES WITHIN THE SEQUENCE
Cyclic sedimentation; Cyclic sediment; Rhythmic sediment; Rhythmic sediments; Depositional cycle
Cyclic sediments (also called rhythmic sediments) are sequences of sedimentary rocks that are characterised by repetitive patterns of different rock types (strata) or facies within the sequence. Processes that generate sedimentary cyclicity can be either autocyclic or allocyclic, and can result in piles of sedimentary cycles hundreds or even thousands of metres thick.
Volcanic tsunami         
  • Travel time of the 2022 Hunga Tonga–Hunga Ha'apai tsunami across the Pacific Ocean
  • Animation of the 1975 Kalapana tsunami
NATURAL HAZARD
Volcanic tsunamis; Volcanogenic tsunami; Volcanogenic tsunamis; Volcano tsunami; Volcano tsunamis
A volcanic tsunami, also called a volcanogenic tsunami, is a tsunami produced by volcanic phenomena. About 20–25% of all fatalities at volcanoes during the past 250 years have been caused by volcanic tsunamis.
Volcanogenic lake         
  • View of [[Lake Toba]] in [[Sumatra]], [[Indonesia]] which is the largest volcanic lake in the world
  • [[Crater Lake]] in Oregon, USA
  • [[Garibaldi Lake]] in British Columbia, Canada, is impounded by lava flows comprising [[The Barrier]]
  • [[Soda Lakes]] in Nevada, USA
  • Lava lake at [[Mount Nyiragongo]] in the Democratic Republic of the Congo
GEOGRAPHIC FORMATION
Acid lake; Volcanic lakes; Volcanic lake; Volcanogenic lakes
A volcanogenic lake is a lake formed as a result of volcanic activity. They are generally a body of water inside an inactive volcanic crater (crater lakes) but can also be large volumes of molten lava within an active volcanic crater (lava lakes) and waterbodies constrained by lava flows, pyroclastic flows or lahars in valley systems.

Википедия

Marine sediment

Marine sediment, or ocean sediment, or seafloor sediment, are deposits of insoluble particles that have accumulated on the seafloor. These particles have their origins in soil and rocks and have been transported from the land to the sea, mainly by rivers but also by dust carried by wind and by the flow of glaciers into the sea. Additional deposits come from marine organisms and chemical precipitation in seawater, as well as from underwater volcanoes and meteorite debris.

Except within a few kilometres of a mid-ocean ridge, where the volcanic rock is still relatively young, most parts of the seafloor are covered in sediment. This material comes from several different sources and is highly variable in composition. Seafloor sediment can range in thickness from a few millimetres to several tens of kilometres. Near the surface seafloor sediment remains unconsolidated, but at depths of hundreds to thousands of metres the sediment becomes lithified (turned to rock).

Rates of sediment accumulation are relatively slow throughout most of the ocean, in many cases taking thousands of years for any significant deposits to form. Sediment transported from the land accumulates the fastest, on the order of one metre or more per thousand years for coarser particles. However, sedimentation rates near the mouths of large rivers with high discharge can be orders of magnitude higher. Biogenous oozes accumulate at a rate of about one centimetre per thousand years, while small clay particles are deposited in the deep ocean at around one millimetre per thousand years.

Sediments from the land are deposited on the continental margins by surface runoff, river discharge, and other processes. Turbidity currents can transport this sediment down the continental slope to the deep ocean floor. The deep ocean floor undergoes its own process of spreading out from the mid-ocean ridge, and then slowly subducts accumulated sediment on the deep floor into the molten interior of the earth. In turn, molten material from the interior returns to the surface of the earth in the form of lava flows and emissions from deep sea hydrothermal vents, ensuring the process continues indefinitely. The sediments provide habitat for a multitude of marine life, particularly of marine microorganisms. Their fossilized remains contain information about past climates, plate tectonics, ocean circulation patterns, and the timing of major extinctions.